

8761NAC USB Type-C Test Solution

8761NAC USB Type-C Tester		8761NAC USB Type-C Tester (Option FX-000C28)	
Application : USB Type C		Application : Type-C VS Type-C	
USB-C USB-A MICRO USB-B		\square	
	Test	Items	
4-wire Measurement Conductance Test	V	4-wire Measurement Conductance Test	V
Conductance/Open/Short	V	Conductance/Open/Short	V
AC/DC Hipot Test & Leakage Current Test	V	AC/DC Hipot Test & Leakage Current Test	V
DC insulation Test	V	DC insulation Test	V
			V/
Component test (DA Resistance (equivalent canacitance (Diode)		Component test (RA Resistance/equivalent capacitance/Diode)	v
Component test (RA Resistance/equivalent capacitance/Diode)	V	Component test (RA Resistance/equivalent capacitance/Diode) Voltage Drop Test (5A)	V

_About USB Type-C

Universal Serial Bus a.k.a. USB is the interface connect computer and outer device

USB Type-C can be insert by both side, and better power supply. Replace the VGA/DVI/HDMI video transmitting. USB Type-C give the consumer better experience for transmitting data, media sharing charging mobile device by using on USB cable. Compatible with DisplayPort, MHL and Thunderbolt 3, etc. USB-C will replace more transmitting interface in the future.

_About USB Type-C

USB Type-C needs to insert an E-Mark IC to control the operation. The inspection for protection chip around E-Mark IC is important.

E-Mark IC is the critical part of Type-C interface. Manufacturer takes the quality of protection component around E-Mark IC really seriously.

USB Type-C Test Solution

__About USB Type-C

Insulation defect will influence the transmitting efficiency.

- With the invisible damage, harness will not pass safety test. The high voltage will cause insulation defect.
- The deviation of contact and size of the cover of USB Type -C may cause short connection for male and female socket.
- The size of USB Type-C is 8.3x2.5mm. This usually cause short problem on soldering paddle card.

_MICROTEST 8761NAC Test Function

MICROTEST 8761NAC is a multifunctional portable tester. Not only detect the poor processing product, but also the O/S status between each contact and the protection component around E-Mark IC.

Open Failure

Short Failure		
Cold Soldering Failure		
Solder Empty		
Crimp Terminal Damage		
	1	
Harness Cause Insulation Failure		
Detect Harness/ Connector's electronical fe	ature to find out the unqua	lified product.

Automatically identify the normal or reverse plugin of wire or connectors

8761NAC Function >>> USB Type-C Test Solution

Open/Short Test

Make sure the contact of wire work properly. Open: The wire should be contact, but it doesn't Short: The wire shouldn't be contacted, but it does

Intermittence O/S

Make sure the cable has intermittent open/short defection There is damage on part of cable, that cause instant contact or not.

4-Wire Conductance Test $1m\Omega$ -52 Ω

8761NAC Function >>> USB Type-C Test Solution

COND. File:2		NET CONST	EP: 1PAGE: 1/3	SET		
[1] MAX. CONDUCTANCE 3.000	1	Name T P+ P-	StdVal Tol			
[2] MIN. CONDUCTANCE 0.000Ω]	COND T A01 A02	1.0000 10.0	-EL		
[3] COND. OFFSET +0.000	[CUNU T AU3 AU4 COND T A05 A06	1.0008 10.0			
[4] CONDUCTANCE MODE SERIES	NET	COND T A07 A08	1.000R 10.0		A-Wire Conductan	co Toct
[5] INTERMITTENCE LIMIT 50.0Ω	1	COND T A09 A10	1.0000 10.0			
[6] INTERMITTENCE TIME 1 Sec	1	COND T A13 A14	1.0008 10.0 1.0008 10.0		Conductance	1m0-520
	COND	CUND T A15 A16 COND T A17 A18	1.0008 10.0 1 0008 10 0	SET	Conductance	
	CLR.	COND T A19 A20 COND T A21 A22	1.000R 10.0 1.000R 10.0		Intermittence Conductance	1mΩ-52Ω
Zero Stat: NO	ZERO	COND T A23 A24	1.0009 10.0	EALL		

Connect to DUT directly to prevent any deviation.

For measuring low resistance DUT, we recommend to choose 4-wire tester.

AC Hi Pot & DC Hi Pot / DC Insulation Resistance

8761NAC Function >>> USB Type-C Test Solution

HIPOT	File:		
Item	DC	Hipot	
[1] Voltage	1000 ^U	700V	
[2] Frequency	Insu.	60Hz	
[3] Time	0.10Sec	0.10Sec	
<pre>[4] Spec.</pre>	1000.0MR	0.50mA	
[5] Offset		0.00mA	
[6] All-Ground	OFF	OFF	
[7] Binary	ON	ON	
[8] All nets	OFF	OFF	
[9] GND pin	A01	A01	
[10]Test rate	FAST	SUPER	NEXT
[11]Max. pin	128	128	PAGE

HI POT Test	
AC Hi pot Test	100V-700V
AC Leakage Current	0.01mA -5mA
AC Arcing Detection	0-9
DC Hi pot Test	50V-1000V
DC Leakage Current	0.1µA-1000µA
DC Arcing Detection	0-9
DC Insulation Resistance	1ΜΩ-1.2GΩ

Put a stabile high voltage on cable to make sure the quality of DUT

DC insulation

The result will judge by the rate of insulation resistance. Insulation resistance defect may cause DUT be penetrated or leakage current under high voltage.

Arc Test

Some high precision product for automobile and military can't accept any arc under high voltage.

- ◆ Inspect the loop contact in the connector fit the request of insulation and voltage.
- ◆ Insulation resistance between loop is lower than the standard.
- ◆ The voltage resistance is lower than the standard that cause leakage current.

RA Resistance / Filter Capacitor / Isolation Diode Test

8761NAC Function >>> USB Type-C Test Solution

Name T P+ P- StdVal Tol; 1 R A01 B01 1.0000K 10.0 2 C A01 B01 1.0000K 10.0 3 D A01 B01 0.700V 10.0 4 H A01 B01 0.000K 10.0	Name T P+ P- StdVal Tolx 1 R A01 B01 1.0000X 10.0 2 C A01 B01 1.0000X 10.0 3 D A01 B01 0.700V 10.0 4 V A01 B01 1.0000X 10.0 5 T A01 B01 1.0000X 10.0	ED I	Т	ST	EP: 1PAG	£E: 1∕1	STEP
	5 T A01 B01 1.0000 10.0	Name 1 2 3	T P+ R A01 C A01 D A01	P- B01 B01 B01 P01	StdVal 1.000K 1.000n 0.700V	Tol× 10.0 10.0 10.0	MEAS

4-Wire Conduc	ctance Test
Resistance	50mΩ-20MΩ
Capacitance	10pF-12µF
Diode	0-6.8V

E-Mark IC is the critical part of Type-C interface.

Manufacturer takes the quality of protection component around E-Mark IC really seriously.

- ◆ Isolation Diode Test
- ◆ RA Resistance Test
- ◆ Signal line to ground line filter capacitor Test
- ◆ Signal line to ground line filter capacitor Test

Option The 2-in-1 Current Expand Box FX-000C28 (5A)

8761NAC Function >>> USB Type-C Test Solution

Voltage Drop Test (5A) E-Marker's VDO Data

E-Marker's VDO Data Test (Option FX-000C28)

8761NAC Function >>> USB Type-C Test Solution

Function

Reading E-Marker's VDO Data using the FX-000C28

Application

USB Type C To USB Type-C

Voltage Drop Test (Option FX-000C28)

8761NAC Function >>> USB Type-C Test Solution

Voltage Drop Test (5A)

ED	IT S	STEP :	1PA(GE: 1∕	
Name 1	T P+ P- V A01 B0:	Sta 1 1	lVa 1 . 000V	Tol% 10.0	MEAS
ī	SET	PARA	1FTF R		SET PAR
	TEST MODE	RESIS	STANC	Ð	SAMI
	FIX.Num:1	. 1A			OFF
					CLR OFF:

Measure voltage difference and inner resistance.

Voltage difference and Resistance is the important figures for the quality.

Qualcomm has combine QC 4.0 and latest PD spec.. High Current low voltage is the trend in the future.

Voltage difference, smaller is better

The resistance might cause voltage difference problem because of the high current transmitting. Charger might be damaged if the voltage difference is too high.

Inner Resistance, smaller is better

The material of cable will affect the efficiency of charging. The inner resistance will increase under high current. With our expansion box, you might able to detect voltage difference and inner resistance.

